3,216 research outputs found

    Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.

    Get PDF
    ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive

    Higher sociability leads to lower reproductive success in female kangaroos: Sociability and fitness in kangaroos

    Get PDF
    In social mammals, social integration is generally assumed to improve females’ reproductive success. Most species demonstrating this relationship exhibit complex forms of social bonds and interactions. However, female eastern grey kangaroos (Macropus giganteus) exhibit differentiated social relationships, yet do not appear to cooperate directly. It is unclear what the fitness consequences of such sociability could be in species that do not exhibit obvious forms of cooperation. Using 4 years of life history, spatial and social data from a wild population of approximately 200 individually recognizable female eastern grey kangaroos, we tested whether higher levels of sociability are associated with greater reproductive success. Contrary to expectations, we found that the size of a female’s social network, her numbers of preferential associations with other females and her group sizes all negatively influenced her reproductive success. These factors influenced the survival of dependent young that had left the pouch rather than those that were still in the pouch. We also show that primiparous females (first-time breeders) were less likely to have surviving young. Our findings suggest that social bonds are not always beneficial for reproductive success in group-living species, and that female kangaroos may experience trade-offs between successfully rearing young and maintaining affiliative relationships

    Higher sociability leads to lower reproductive success in female kangaroos

    Get PDF
    In social mammals, social integration is generally assumed to improve females' reproductive success. Most species demonstrating this relationship exhibit complex forms of social bonds and interactions. However, female eastern grey kangaroos (Macropus giganteus) exhibit differentiated social relationships, yet do not appear to cooperate directly. It is unclear what the fitness consequences of such sociability could be in species that do not exhibit obvious forms of cooperation. Using 4 years of life history, spatial and social data from a wild population of approximately 200 individually recognizable female eastern grey kangaroos, we tested whether higher levels of sociability are associated with greater reproductive success. Contrary to expectations, we found that the size of a female's social network, her numbers of preferential associations with other females and her group sizes all negatively influenced her reproductive success. These factors influenced the survival of dependent young that had left the pouch rather than those that were still in the pouch. We also show that primiparous females (first-time breeders) were less likely to have surviving young. Our findings suggest that social bonds are not always beneficial for reproductive success in group-living species, and that female kangaroos may experience trade-offs between successfully rearing young and maintaining affiliative relationships

    External sources of clean technology: evidence from the clean development mechanism

    Get PDF
    New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model

    Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling

    Get PDF
    In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
    corecore